Lesson 19. Coding Categorical Predictors - Part 1

Note. In Part 2 of this lesson, you can run the R code that generates the outputs here in Part 1.

1 Overview

- We have seen how to include categorical predictor variables when there are only two categories
- Now we'll see what to do when there are more than two categories

Example 1. Let's look at the data in ThreeCars2017 from the Stat2Data library, which contains information on 90 randomly selected used cars. In particular, we will consider *CarType* (Accord, Maxima, or Mazda6), *Price* (in \$1000s), and *Mileage* (in 1000s of miles).

We want to predict a car's price based on its mileage and type. In particular, can we answer the following questions:

- Are car type and mileage useful predictors of price?
- What is the predicted price of a car with given characteristics?
- For a fixed mileage, does the price of a car differ by car type, on average?
- After accounting for car type, how is a car's mileage related to its price, on average?
- We can run the following R code:

```
library(Stat2Data)
data(ThreeCars2017)
head(ThreeCars2017)
```

Here is the output:

	A data.frame: 6 × 7						
	CarType	Age	Price	Mileage	Mazda6	Accord	Maxima
	<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<int></int>
1	Mazda6	3	15.9	17.8	1	0	0
2	Mazda6	2	16.4	19.0	1	0	0
3	Mazda6	1	18.9	20.9	1	0	0
4	Mazda6	2	16.9	24.0	1	0	0
5	Mazda6	2	20.5	24.0	1	0	0
6	Mazda6	1	19.0	24.2	1	0	0

• Let's visualize the data by creating a scatterplot, with different point shapes (the pch parameter) for each *CarType*

Note the use of nested ifelse() to assign 3 shapes for 3 categories

Here is the output:

2 Including categorical predictors into a regression model

- To include a categorical variable with more than 2 categories:
 - Select one group to be the **reference category**
 - Include an indicator variable for each other category
- So, if we have ℓ categories, we will have $\ell 1$ indicator variables
- Note! Do not code a categorical variable as one predictor with groups labeled by numerical values (e.g., $X \in \overline{\{0, 1, 2\}}$)
 - This forces the group intercepts to be equally spaced not what we're going for
 - This also yields different intercepts if we assign the group labels differently also not what we're going for
 - $\circ~$ See STAT2 Section 4.5 for a cautionary demonstration of this incorrect approach

3 Allowing different intercepts for each group

Example 2. Continuing with Example 1...

- For *CarType*, let Accord be the reference category
- Then, we define indicator variables for Maxima and Mazda6:

- Our model:
- For Accords, our model reduces to:
- For Maximas, our model reduces to:
- For Mazda6s, our model reduces to:
- Coefficients:

• We can fit this model with the following R code:

```
fit <- lm(Price ~ Mileage + as.factor(CarType), data = ThreeCars2017)
summary(fit)</pre>
```

A See Part 2 for other ways to do this in R – in particular, if you want to change the reference category

The output is as follows:

```
Call:
lm(formula = Price ~ Mileage + as.factor(CarType), data = ThreeCars2017)
Residuals:
   Min
          1Q Median 3Q
                                  Max
-6.4208 -2.1225 -0.2257 1.6904 6.7866
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     21.087383 0.682805 30.883 <2e-16 ***
                      -0.124906 0.008252 -15.136 <2e-16 ***
Mileage
as.factor(CarType)Maxima 1.539735 0.726685 2.119 0.0370 *
as.factor(CarType)Mazda6 -1.261552 0.733145 -1.721 0.0889.
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.813 on 86 degrees of freedom
Multiple R-squared: 0.7518, Adjusted R-squared: 0.7431
F-statistic: 86.81 on 3 and 86 DF, p-value: < 2.2e-16
```

Example 3. Continuing with Example 2...

a. What is the fitted model?

b. Predict the price of a Maxima with 30,000 miles.

c. Carefully interpret the coefficient of the *Mazda6* indicator variable.

d. For a fixed car type, describe the estimated relationship between mileage and price.

e. Is the relationship you described in part d statistically significant?

4 Allowing different intercepts and slopes for each group

Example 4. Continuing Example 3...

• The model that would allow for different intercepts and slopes is:

• We can fit this model with the following R code:

The output is as follows:

```
Call:
lm(formula = Price ~ Mileage + as.factor(CarType) + Mileage:as.factor(CarType),
    data = ThreeCars2017)
Residuals:
   Min 1Q Median 3Q
                                   Max
-6.5984 -2.0047 -0.1778 1.8321 6.7536
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               20.809613 0.876372 23.745 < 2e-16 ***
                                -0.119812 0.012964 -9.242 1.93e-14 ***
Mileage
as.factor(CarType)Maxima2.4616131.4679041.6770.0973as.factor(CarType)Mazda6-1.0164871.355525-0.7500.4554
                                2.461613 1.467904 1.677 0.0973 .
Mileage:as.factor(CarType)Maxima -0.016325 0.022540 -0.724 0.4709
Mileage:as.factor(CarType)Mazda6 -0.004603 0.018668 -0.247 0.8058
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.837 on 84 degrees of freedom
Multiple R-squared: 0.7533, Adjusted R-squared: 0.7386
F-statistic: 51.3 on 5 and 84 DF, p-value: < 2.2e-16
```

Example 5. Continuing with Example 4...

a. What is the fitted model?

b. How does the car type affect the relationship between *Mileage* and *Price*?

• In a future lesson, we will learn how to formally test if there is a significant difference among the slopes by testing for a significant difference between the coefficients of subsets of predictors